Guia de Peças e Componentes (Hardware) para a FTC

Introdução: A Base Física do Robô

O hardware, ou as **Peças e Componentes**, é a fundação física do robô FTC. A escolha e a integração desses componentes são cruciais para a funcionalidade, durabilidade e desempenho do robô. Este guia detalha os sistemas de construção, a eletrônica de controle e os sensores essenciais.

1. Sistemas de Construção (Básico)

O FTC permite o uso de diversos sistemas de construção, mas a maioria das equipes de alto nível utiliza sistemas modulares de metal.

1.1. Sistemas Populares

REV Robotics: Conhecido por seu sistema de extrusão de alumínio (Extrusion System) e componentes eletrônicos integrados. É leve e flexível para prototipagem.

goBILDA: Oferece um sistema métrico (4mm e 8mm) com uma vasta biblioteca de peças estruturais, engrenagens e rolamentos. É conhecido pela sua rigidez e precisão.

TETRIX: Um sistema mais tradicional, baseado em furos e vigas, ainda utilizado, mas menos comum em designs de ponta devido à menor rigidez em comparação com os sistemas de canal.

1.2. Melhores Práticas de Construção

Rigidez Estrutural: Use suportes angulares (gussets) e vigas em forma de canal (channel) para evitar a flexão (flex) do chassi e dos mecanismos. A rigidez é

fundamental para a precisão da programação.

Alinhamento: Garanta que todos os eixos (axles) e rolamentos (bearings) estejam perfeitamente alinhados para reduzir o atrito e o desgaste.

Fixação: Use parafusos de cabeça chata (flat head) em superfícies de deslizamento e porcas de nylon (nylock nuts) ou travas de rosca (thread locker) em conexões críticas para evitar que se soltem durante a vibração da partida.

2. Eletrônica e Sistema de Controle

(Intermediário) O coração do robô é o sistema de controle, centrado

no REV Control Hub.

2.1. O REV Control Hub

O Control Hub é um dispositivo "tudo-em-um" que combina o computador de bordo (Robot Controller), o controlador de motores, o controlador de servos e o sensor IMU (Unidade de Medição Inercial).

Porta/Conexão	Função	Dica de Uso
Motor Ports (0- 3)	Conexão para motores DC (ex: REV HD Hex Motor).	Use motores com encoders para controle de posição preciso.
Servo Ports (0- 5)	Conexão para servos padrão e servos contínuos.	Defina as posições de servo no código com base em testes práticos.
I2C Ports	Conexão para sensores digitais avançados (ex: sensor de cor, sensor de distância).	Use o I2C para reduzir a confusão de cabos e aumentar a precisão dos dados.

IMU	Sensor de giroscópio e	Essencial para manter o robô
	acelerômetro interno.	em linha reta e para rotações
		precisas no autônomo.

2.2. Gerenciamento de Energia

Bateria Principal: Use apenas as baterias aprovadas pelo FTC. Monitore a tensão da bateria no código para evitar falhas durante a partida. **Fiação (Wiring):** Mantenha a fiação limpa e organizada. Use cores diferentes para cabos de motor, servo e sensor. Cabos soltos podem ser cortados ou desconectados durante a partida.

3. Motores e Atuadores (Avançado)

A escolha e o dimensionamento dos atuadores (motores e servos) determinam a capacidade de trabalho do robô.

3.1. Motores DC e Relação de Transmissão (Gearing)

Torque vs. Velocidade: Entenda o trade-off. Um motor com alta relação de transmissão (gear ratio) terá mais torque (força) e menos velocidade.

Cálculo de Relação: Calcule a relação de transmissão necessária para o seu mecanismo (ex: elevador) com base no peso que ele precisa levantar e na velocidade desejada.

Motores com Encoder: Use motores com encoders (como os REV HD Hex Motor com encoder) para permitir que o software saiba exatamente a posição ou a velocidade do motor. Isso é crucial para o controle de posição (PID).

3.2. Servos e Servos Contínuos

Servos Padrão: Usados para posicionamento angular preciso (ex: garras, liberadores de peças).

Servos Contínuos: Funcionam como motores de baixa potência,

permitindo rotação contínua, mas com controle de velocidade em vez de posição.

4. Sensores e Visão Computacional (Avançado)

Sensores são os "olhos" e "ouvidos" do robô, essenciais para a fase autônoma.

4.1. Sensores Essenciais

Sensor de Distância (Range Sensor): Usado para medir a distância até paredes ou objetos, auxiliando na navegação e no posicionamento.

Sensor de Cor (Color Sensor): Usado para identificar peças do jogo ou linhas no campo.

Encoder: Embora integrados aos motores, os encoders são sensores que medem a rotação do eixo, permitindo o controle de distância e posição.

4.2. Visão Computacional

Câmera: A câmera (seja a do Control Hub ou uma webcam USB) é usada para visão computacional.

OpenCV e EasyOpenCV: Bibliotecas de software usadas para processar as imagens da câmera.

Detecção de Padrões: Identificar a posição de um cone ou peça do jogo.

Localização: Usar a câmera para localizar o robô no campo (ex:

AprilTags).

Dica de Hardware	Descrição
Teste de Carga	Teste todos os mecanismos sob a carga máxima esperada. Um elevador que funciona vazio pode falhar com o peso da peça do jogo.
Peças de Reposição	Mantenha um estoque de peças de desgaste comum (parafusos, porcas, engrenagens, cabos) para reparos rápidos na competição.

Documentação	Mantenha um inventário detalhado de todas as peças e
do Hardware	suas localizações no robô.

Conclusão

O domínio do hardware no FTC exige um equilíbrio entre a escolha de componentes robustos e a integração eletrônica limpa. Ao entender as capacidades e limitações dos sistemas de construção, otimizar a fiação e utilizar sensores avançados, sua equipe construirá um robô não apenas forte, mas também inteligente e confiável.