Guia de Engenharia e Design para a FTC

Introdução: A Filosofia da Engenharia no FTC

A Engenharia no FIRST Tech Challenge (FTC) é a espinha dorsal da competição. Não se trata apenas de construir um robô funcional, mas de dominar o **Processo de Design de Engenharia (PDE)** e documentar essa jornada de forma impecável no **Caderno de Engenharia (Engineering Notebook)**. O sucesso é medido tanto pela performance do robô quanto pela clareza e profundidade da documentação do processo.

1. O Processo de Design de Engenharia (PDE)

O PDE é um ciclo iterativo que transforma uma ideia em um produto final otimizado. No FTC, a iteração rápida é fundamental devido ao tempo limitado da temporada.

1.1. Fase 1: Definição e Conceituação (Básico)

Análise do Jogo: Estudo minucioso do **Game Manual Part 2** para identificar todas as regras, restrições e, crucialmente, as oportunidades de pontuação.

Requisitos e Restrições: Definir o que o robô deve fazer (requisitos) e o que ele não pode fazer (restrições de tamanho, peso, materiais).

Brainstorming: Gerar o máximo de conceitos possível, sem julgamento inicial. Esboços rápidos e modelos de papel/papelão são incentivados.

1.2. Fase 2: Design e Prototipagem (Intermediário)

Seleção de Conceitos: Usar uma **Matriz de Decisão** (Decision Matrix) para avaliar os conceitos com base em critérios como complexidade, custo, peso e eficácia.

Prototipagem Rápida: Construir modelos simples e de baixa fidelidade dos mecanismos-chave (ex: um braço, um coletor) para testar a

viabilidade.

CAD (Computer-Aided Design): Migrar os conceitos selecionados para um software CAD (como Onshape ou Fusion 360). O CAD permite verificar colisões, calcular peso e criar listas de materiais precisas antes da construção física.

1.3. Fase 3: Construção, Teste e Iteração (Avançado)

Construção Modular: Construir o robô em módulos (chassi, coletor, elevador) para facilitar a manutenção e a substituição de peças.

Testes Quantitativos: Não basta dizer que "funcionou". Os testes devem ser quantitativos. Exemplo: "O mecanismo coletor pegou 9 em 10 peças em 3 segundos."

Análise de Falhas e Iteração: Documentar o que falhou e por que. Cada falha deve levar a uma nova iteração de design. O Caderno de Engenharia deve mostrar uma progressão clara de A para B, B para C, e assim por diante.

Dica de Engenharia	Descrição
Design para Manutenção	Use parafusos e porcas acessíveis. Evite designs que exijam desmontar metade do robô para trocar um motor.
Gestão de Cabos	Cabos organizados (usando abraçadeiras ou malhas) evitam falhas elétricas e facilitam a inspeção.
Uso de Fatores de Segurança	Dimensione componentes críticos (como eixos e engrenagens) para suportar mais do que a carga esperada para evitar quebras.

2. O Caderno de Engenharia (Engineering Notebook)

O Caderno de Engenharia é a evidência do seu processo e o principal documento de avaliação para a maioria dos prêmios técnicos.

2.1. Estrutura e Formato (Básico)

O Caderno deve ser um registro **cronológico** e **permanente** do trabalho da equipe. **Diário de Bordo:** Todas as reuniões, decisões, testes e resultados devem ser datados e assinados pelos membros presentes.

Índice e Numeração: Deve ter um índice claro e todas as páginas devem ser numeradas.

Seções Principais:

Seção de Equipe: Metas, plano de negócios, organograma, orçamento. **Seção de Engenharia:** O coração do caderno, documentando o PDE.

Seção de Outreach: Detalhes das atividades de divulgação e sustentabilidade.

2.2. Conteúdo de Qualidade (Intermediário)

Um bom Caderno de Engenharia vai além de um diário. Ele deve ser uma ferramenta de comunicação.

Justificativa de Decisão: Para cada grande decisão (ex: escolher rodas Mecanum em vez de rodas Omni), inclua uma análise de prós e contras e a razão final da escolha.

Esboços e Desenhos: Use esboços claros e rotulados para ilustrar ideias. Desenhos CAD e capturas de tela de simulações são altamente valorizados.

Dados de Teste: Inclua tabelas e gráficos dos resultados dos testes. Isso demonstra que as decisões são baseadas em dados, não em suposições.

2.3. Dicas para um Caderno Vencedor (Avançado)

Contar uma História: O caderno deve contar a história da equipe e do robô. Os juízes devem conseguir seguir a evolução do design, entendendo os desafios e

as soluções encontradas.

Reflexão: Inclua seções de reflexão após grandes marcos ou competições. O que a equipe aprendeu? O que faria diferente? Isso demonstra maturidade e aprendizado contínuo.

Conexão com o Outreach: Certifique-se de que as atividades de Outreach e o plano de sustentabilidade da equipe estejam bem documentados, pois eles se conectam diretamente com o prêmio **Inspire Award**.

Dica de Documentação	Impacto na Avaliação
"Por que" em vez de "O quê"	Justificar por que uma mudança foi feita é mais importante do que apenas registrar o quê foi mudado.
Fotos Anotadas	Use fotos do robô ou dos testes com setas e legendas para apontar detalhes específicos.
Consistência	Manter um formato e estilo de escrita consistentes em todo o caderno.

3. Dicas Avançadas de Construção e Otimização

3.1. Otimização de Peso e Estrutura

Análise de Tensão: Use o CAD para realizar análises de tensão (Stress Analysis) em peças críticas para garantir que não falharão sob carga.

Alívio de Peso (Weight Reduction): Identifique áreas estruturais que podem ter material removido (furos, recortes) sem comprometer a integridade estrutural.

Rigidez: A rigidez é crucial. Use triângulos e reforços diagonais (gussets) para evitar flexão (flex) no chassi e nos mecanismos.

3.2. Mecanismos de Movimento (Drivetrains)

O Drivetrain é a base do robô.

Rodas Mecanum: Permitem movimento omnidirecional (strafe), mas

exigem programação precisa e um chassi muito rígido para funcionar corretamente.

Rodas Omni: Permitem movimento lateral mais fácil, mas não são totalmente omnidirecionais.

Transmissão (Gearing): Calcule a relação de transmissão (gear ratio) ideal para equilibrar velocidade e torque, dependendo da tarefa principal do robô (empurrar ou ser rápido).

3.3. Sistemas de Atuação (Actuators)

Elevadores (Lifts):

Cascata (Cascade): Mais compacto, mas mais complexo de montar e manter.

Elevador de Estágio Contínuo (Continuous Stage): Mais simples, mas requer mais espaço vertical.

Motores e Servos: Entenda a diferença entre motores (para movimento contínuo) e servos (para movimento angular preciso e limitado). Use o motor correto para a tarefa correta.

Conclusão

A Engenharia no FTC é uma disciplina que exige rigor, criatividade e, acima de tudo, **documentação**. Ao adotar um PDE robusto, usar o CAD de forma eficaz e manter um Caderno de Engenharia que conte a história completa e justificada do seu robô, sua equipe estará preparada não apenas para vencer partidas, mas também para conquistar os prêmios de design e excelência.